If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+6t=24
We move all terms to the left:
3t^2+6t-(24)=0
a = 3; b = 6; c = -24;
Δ = b2-4ac
Δ = 62-4·3·(-24)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-18}{2*3}=\frac{-24}{6} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+18}{2*3}=\frac{12}{6} =2 $
| 3=2x+26 | | 12+3n=-16n+18n+14 | | -6w+8.5=-w+7.25 | | 1436,4=968+9,25*x-4,33*30 | | -2x²-6x-4=0 | | 5/u=50 | | 6(-3a+2)=2a-98 | | 13u=14u+14 | | -5.7x-44.1=8.3x | | 3•(t)^2+6•t=24 | | -7x-8+2x=2 | | (8x+12)=9 | | 7.2y=4.7=62.3 | | 11x+3=12+3x | | -6x-25=-2x-69 | | y/3-7=23 | | 45÷n+1=10 | | 4x-27=75-8x | | X²+6x+17=0 | | 3(3x-2)-5=3x-41 | | 8-(-3x+2)=-11 | | 2(3x+24)=114 | | (45÷n)+1=10 | | 40=4(2x+2) | | 16=(2-3x)(x) | | -4x-6=8x+6 | | 2(3x-5)=3x-37 | | 15x-5+9x+1+40=180 | | 21x-3+38+61=180 | | 4x+100=420 | | 2d-5d+20=5–8d | | x+41=4(2x-5)-9 |